Package: docopulae 0.4.0

docopulae: Optimal Designs for Copula Models

A direct approach to optimal designs for copula models based on the Fisher information. Provides flexible functions for building joint PDFs, evaluating the Fisher information and finding optimal designs. It includes an extensible solution to summation and integration called 'nint', functions for transforming, plotting and comparing designs, as well as a set of tools for common low-level tasks.

Authors:Andreas Rappold [aut, cre]

docopulae_0.4.0.tar.gz
docopulae_0.4.0.zip(r-4.5)docopulae_0.4.0.zip(r-4.4)docopulae_0.4.0.zip(r-4.3)
docopulae_0.4.0.tgz(r-4.4-x86_64)docopulae_0.4.0.tgz(r-4.4-arm64)docopulae_0.4.0.tgz(r-4.3-x86_64)docopulae_0.4.0.tgz(r-4.3-arm64)
docopulae_0.4.0.tar.gz(r-4.5-noble)docopulae_0.4.0.tar.gz(r-4.4-noble)
docopulae_0.4.0.tgz(r-4.4-emscripten)docopulae_0.4.0.tgz(r-4.3-emscripten)
docopulae.pdf |docopulae.html
docopulae/json (API)
NEWS

# Install 'docopulae' in R:
install.packages('docopulae', repos = c('https://arappold.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/arappold/docopulae/issues

On CRAN:

3.18 score 30 scripts 208 downloads 1 mentions 41 exports 0 dependencies

Last updated 6 years agofrom:c7fa4da596. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-win-x86_64OKNov 01 2024
R-4.5-linux-x86_64OKNov 01 2024
R-4.4-win-x86_64OKNov 01 2024
R-4.4-mac-x86_64OKNov 01 2024
R-4.4-mac-aarch64OKNov 01 2024
R-4.3-win-x86_64OKNov 01 2024
R-4.3-mac-x86_64OKNov 01 2024
R-4.3-mac-aarch64OKNov 01 2024

Exports:buildfDefficiencyDeriv2LogfDerivLogfdesignDsensitivityfisherIgetMgrow.gridintegrateAnint_expandSpacenint_funcDimnint_gridDimnint_integratenint_integrateNCubenint_integrateNCube_cubaturenint_integrateNCube_integratenint_integrateNCube_SparseGridnint_integrateNFuncnint_integrateNFunc_recursivenint_intvDimnint_scatDimnint_spacenint_tanTransformnint_transformnint_TYPE_FUNC_DIMnint_TYPE_GRID_DIMnint_TYPE_INTV_DIMnint_TYPE_SCAT_DIMnint_validateSpacenumDeriv2LogfnumDerivLogfparamreducerowmatchroworderrowsduplicatedseq1wDefficiencywDsensitivityWynn

Dependencies:

Readme and manuals

Help Manual

Help pageTopics
Build probability density or mass Functionbuildf
D EfficiencyDefficiency
Build Derivative Function for Log fDeriv2Logf DerivLogf
Designdesign
Design of Experiments with Copulasdocopulae-package docopulae
D SensitivityDsensitivity
Fisher InformationfisherI
Get Fisher InformationgetM
Grow Gridgrow.grid
Integrate AlternativeintegrateA
Space Validation Errorsnint_ERROR nint_ERROR_DIM_TYPE nint_ERROR_SCATTER_LENGTH nint_ERROR_SPACE_DIM nint_ERROR_SPACE_TYPE
Expand Spacenint_expandSpace
Function Dimensionnint_funcDim
Grid Dimensionnint_gridDim
Integratenint_integrate
Integrate Hypercubenint_integrateNCube nint_integrateNCube_cubature nint_integrateNCube_integrate nint_integrateNCube_SparseGrid
Integrate N Functionnint_integrateNFunc nint_integrateNFunc_recursive
Interval Dimensionnint_intvDim
Scatter Dimensionnint_scatDim
Spacenint_space
Tangent Transformnint_tanTransform
Transform Integralnint_transform
Dimension Type Attribute Valuesnint_TYPE nint_TYPE_FUNC_DIM nint_TYPE_GRID_DIM nint_TYPE_INTV_DIM nint_TYPE_SCAT_DIM
Validate Spacenint_validateSpace
Build Derivative Function for Log fnumDeriv2Logf numDerivLogf
Parametric Modelparam
Plot Designplot.desigh
Print Spaceprint.nint_space
Reduce Designreduce
Row Matchingrowmatch
Matrix Ordering Permutationroworder
Determine Duplicate Rowsrowsduplicated
Sequence Generationseq1
Update Parametric Modelupdate.param
Weighted D EfficiencywDefficiency
Weighted D SensitivitywDsensitivity
WynnWynn